Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38378123

RESUMO

A 14-day exposure study in which sub-adult red drum (Sciaenops ocellatus) were fed a petroleum crude oil-treated pellet feed was conducted to assess the potential effects of ingesting an oil-contaminated food source. Though food consumption decreased, significant polycyclic aromatic hydrocarbons accumulated in the body and liver, which did not affect the body and liver's fatty acid composition. In the red drum given the crude oil-treated feed, a significant decrease in the RNA:DNA growth rate index was noted, while only subtle changes in body and liver lipid composition were seen. Differentially expressed gene analysis in the liver demonstrated a significant down-regulation of leptin and up-regulation of the aryl hydrocarbon receptor nuclear translocator-like protein 1. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses indicated enrichment of terms and pathways associated with cholesterol biosynthesis and oxidative stress. Ingenuity Pathway Analysis further predicted activation of seven pathways associated with cholesterol biosynthesis. Measured oxidative stress biomarkers in the blood indicated decreased systemic antioxidants with increased lipid peroxidation. The results of this study suggest that dietary oil exposure alters the signaling of biological pathways critical in cholesterol biosynthesis and disruptions in systemic oxidative homeostasis.


Assuntos
Perciformes , Petróleo , Animais , Exposição Dietética/efeitos adversos , Petróleo/toxicidade , Perciformes/fisiologia , Ácidos Graxos , Colesterol
2.
Environ Sci Technol ; 53(24): 14734-14743, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31765146

RESUMO

The Deepwater Horizon (DWH) blowout resulted in the deposition of toxic polycyclic aromatic hydrocarbons (PAHs), in the coastal sediments of the Gulf of Mexico. The immediate effects on an ecosystem from an oil spill are clearly recognizable, however the long-term chronic effects and recovery after a spill are still not well understood. Current methodologies for biomonitoring wild populations are invasive and mostly lethal. Here, two potential nonlethal biomonitoring tools for the assessment of PAH toxicity and induced biological alterations in the field, were identified using laboratory-validated methods. In this study, subadult southern flounder (Paralichthys lethostigma) were chronically exposed to DWH surrogate oiled sediments for 35 days; a subset of these exposed flounder were then provided a clean nonexposure period to ascertain the utility of selected biomarkers to monitor recovery post exposure. After chronic exposure, there was an increase in gene expression of cytochrome P450 1A but not glutathione S-transferase. There was also a notable imbalance of oxidants to antioxidants, measured as reduced glutathione, oxidized glutathione, and their ratio in the blood. Evidence of subsequent oxidative damage due to chronic exposure was found through lipid peroxidation and DNA damage assessments of liver, gill, and blood.


Assuntos
Linguado , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Biomarcadores , Ecossistema , Monitoramento Ambiental , Golfo do México , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...